
Generics and Comparable
Analysis of Algorithms intro

Function Objects intro

Nothing new to check out from SVN today

Exam will NOT include Chapter 14.
◦ Except for the intro to analysis and big-oh which we

will cover today.
◦ I want to give you more time for the ideas to sink in.
◦ Also I want to do a couple of other things before we

get to the heart of chapter 14.
The Computer part of the exam will not ask
you to do any GUI programming.
◦ There most likely will be GUI programming on the

Final exam.
◦ Likely things for you to do for Exam 2 Computer part:

Algorithms, recursion, classes, interfaces, inheritance,
abstract classes, ArrayLists and Arrays.

On the Written part, I may ask something
about how your team did some particular
aspect of the project
◦ As a way of checking to make sure that everyone

understands everything you did for the project

Do you have questions about the exam ?

Vector Graphics
Exam
Recursion
Anything Else

Also Comparable interface

Before Java 1.5 (still supported, but gives warnings):

New version (using Java generic type):
<Integer> is a “type argument”
to the declaration of ag.

Explicit class cast
required.

No class cast
required.automatic unboxing:

Integer int. Efficiency: Compile time
vs run-time checking

Implicit creation of Integer
wrapper for 7 (auto-boxing)

Q1-2

interface java.lang.Comparable<T>
Type Parameters: T - the type of objects that
this object may be compared to
int compareTo(T other)
◦ Compares this object with the specified object for

ordering purposes.
◦ Returns a negative integer, zero, or a positive

integer as this object is less than, equal to, or
greater than the specified object.

from the JDK API documentation

Any class that implements Comparable contracts to provide a
compareTo() method

Therefore, we can write generic methods on Comparable
objects. For example, in the java.util.Arrays class:

String is a Comparable class.
If it did not already have a compareTo()
method, how would you write it?

Q3

import java.util.Arrays;

public class StringSort {

public static void main(String[] args) {
String [] toons = {"Mickey", "Minnie", "Donald",

"Pluto", "Goofy"};
Arrays.sort(toons);
for (String s:toons)

System.out.println(s);
}

}

Output:
Donald
Goofy
Mickey
Minnie
Pluto

Collections.sort can
similarly be used to sort
ArrayLists and other
Collection objects.

General hints on efficiency
Examples
Big-oh and its cousins

What kinds of things should we measure?
◦ CPU time
◦ memory used
◦ disk transfers
◦ network bandwidth
Mostly in this course, we focus on the first
two, and especially on CPU time
To measure running time, we can call
System.currentTimeMillis()

Some simple efficiency tips
◦ If a statement in a loop calculates the same value

each time through, move it outside (usually
before) the loop
◦ Store and retain data on a “need to know” basis

Don’t store values that you won’t reuse
Do store values that you need to reuse

◦ Don’t put everything into an array when you only
need one or two consecutive items at a time
◦ Don’t declare a variable as a field if it can be a

local variable of a method

Q4

for (int i=0; i < a.length; i++)
if (a[i].compareTo(soughtItem) > 0)

return NOT_FOUND; // perhaps NOT_FOUND == -1
else if (a[i].compareTo(soughtItem) == 0)

return i;
return NOT_FOUND;

•What should we count?
•Best case, worst case, average case?

Q5

Does the following method actually create and return a copy of the
string s?

public static String stringCopy(String s) {
String result = "";
for (int i=0; i<s.length(); i++)

result += s.charAt(i);
return result;

}

What can we say about the running time of the method?
(where N is the length of the string s)

What should we count?

How can we do the copy more efficiently?

Don’t be too quick to make assumptions
when analyzing an algorithm!

Q6

Always code as if the guy who
ends up maintaining your code
will be a violent psychopath
who knows where you live.

--Martin Golding

Figure 5.1
Running times for small inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.2
Running times for moderate inputs

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

Figure 5.3
Functions in order of increasing growth rate

Data Structures & Problem Solving using JAVA/2E Mark Allen Weiss © 2002 Addison Wesley

a.k.a "log linear"

We only really care what happens when N
(the size of a problem) gets large
Is the function basically linear, quadratic,
etc. ?
For example, when n is large, the difference
between n2 and n2 – 3 is negligible

≥In this course,
we won't be so
formal . We'll
just say that
f(N) is O(g(N)
means that f(n)
is eventually
smaller than a
constant times
g(n).

Q7

≥

f(N) is O(g(N)) if there is a constant c such
that for sufficiently large N, f(N) ≤ cg(N)
◦ Informally, as N gets large the growth rate of f is

bounded above by the growth rate of g
f(N) is Ω(g(N)) if there is a constant c such
that for sufficiently large N, f(N) ≥ cg(N)
◦ Informally, as N gets large the growth rate of f is

bounded below by the growth rate of g
f(N) is Θ(g(N)) if f(N) is O(g(n)) and f(N) is Ω(g(N))

Informally, as N gets large the growth rate of f is the
same as the growth rate of g

consider the limit

What does it say about asymptotics if this limit is
zero, nonzero, infinite?
We could say that knowing the limit is a sufficient
but not necessary condition for recognizing big-oh
relationships.
It will be all we need for all examples in this course.

)(
)(lim ng

nf

n ∞→

Q8

1. N and N2

2. N2 + 3N + 2 and N2

3. N + sin(N) and N
4. log N and N
5. N log N and N2

6. Na and Nn

7. aN and bN (a < b)
8. logaN and logbN (a < b)
9. N! and NN

Q9

Give tightest bound you can
◦ Saying that 3N+2 is O(N3) is true, but not as useful as

saying it’s O(N) [What about Θ(N3) ?]

Simplify:
◦ You could say:
◦ 3n+2 is O(5n-3log(n) + 17)
◦ and it would be technically correct…
◦ It would also be poor taste … and put me in a bad mood.

But… if I ask “true or false: 3n+2 is O(n3)”,
what’s the answer?
◦ True!
◦ There may be “trick” questions like this on assignments and

exams.
◦ But they aren’t really tricks, just following the big-Oh

definition!

Begin work on your last
VectorGraphics cycle.
Finish before next class
meeting.
Get help as needed.

	CSSE 220 Day 22
	Exam contents
	VectorGraphics and Exam 2
	Questions
	Generic types and Collections
	Generic Types and Collections
	Comparable review:
	compareTo: the fine print
	Slide Number 10
	Example of using Arrays.sort
	Measuring program efficiency
	Measuring program effciency
	Program Efficiency, part 2
	Familiar example: �Linear search of a sorted array of Comparable items
	Another algorithm analysis example
	Break
	Interlude
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Asymptotic analysis
	Slide Number 23
	Slide Number 24
	Recap: O, Ω, Θ
	Limits and asymptotics
	Apply this limit property to the following pairs of functions
	Big-Oh Style
	Work Time

